A Generative Model for Image Segmentation Based on Label Fusion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generative probability model of joint label fusion for multi-atlas based brain segmentation

Automated labeling of anatomical structures in medical images is very important in many neuroscience studies. Recently, patch-based labeling has been widely investigated to alleviate the possible mis-alignment when registering atlases to the target image. However, the weights used for label fusion from the registered atlases are generally computed independently and thus lack the capability of p...

متن کامل

A Generative Model for Probabilistic Label Fusion of Multimodal Data

The maturity of registration methods, in combination with the increasing processing power of computers, has made multi-atlas segmentation methods practical. The problem of merging the deformed label maps from the atlases is known as label fusion. Even though label fusion has been well studied for intramodality scenarios, it remains relatively unexplored when the nature of the target data is mul...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation

Quantitative magnetic resonance analysis often requires accurate, robust and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert segmentation priors to achieve this task. Inspired by rece...

متن کامل

Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation

Label fusion is a key step in multi-atlas based segmentation, which combines labels from multiple atlases to make the final decision. However, most of the current label fusion methods consider each voxel equally and independently during label fusion. In our point of view, however, different voxels act different roles in the way that some voxels might have much higher confidence in label determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Medical Imaging

سال: 2010

ISSN: 0278-0062,1558-254X

DOI: 10.1109/tmi.2010.2050897